Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 18(5): e0285121, 2023.
Article in English | MEDLINE | ID: covidwho-2319931

ABSTRACT

BACKGROUND: Recently, artificial intelligence (AI)-based applications for chest imaging have emerged as potential tools to assist clinicians in the diagnosis and management of patients with coronavirus disease 2019 (COVID-19). OBJECTIVES: To develop a deep learning-based clinical decision support system for automatic diagnosis of COVID-19 on chest CT scans. Secondarily, to develop a complementary segmentation tool to assess the extent of lung involvement and measure disease severity. METHODS: The Imaging COVID-19 AI initiative was formed to conduct a retrospective multicentre cohort study including 20 institutions from seven different European countries. Patients with suspected or known COVID-19 who underwent a chest CT were included. The dataset was split on the institution-level to allow external evaluation. Data annotation was performed by 34 radiologists/radiology residents and included quality control measures. A multi-class classification model was created using a custom 3D convolutional neural network. For the segmentation task, a UNET-like architecture with a backbone Residual Network (ResNet-34) was selected. RESULTS: A total of 2,802 CT scans were included (2,667 unique patients, mean [standard deviation] age = 64.6 [16.2] years, male/female ratio 1.3:1). The distribution of classes (COVID-19/Other type of pulmonary infection/No imaging signs of infection) was 1,490 (53.2%), 402 (14.3%), and 910 (32.5%), respectively. On the external test dataset, the diagnostic multiclassification model yielded high micro-average and macro-average AUC values (0.93 and 0.91, respectively). The model provided the likelihood of COVID-19 vs other cases with a sensitivity of 87% and a specificity of 94%. The segmentation performance was moderate with Dice similarity coefficient (DSC) of 0.59. An imaging analysis pipeline was developed that returned a quantitative report to the user. CONCLUSION: We developed a deep learning-based clinical decision support system that could become an efficient concurrent reading tool to assist clinicians, utilising a newly created European dataset including more than 2,800 CT scans.


Subject(s)
COVID-19 , Deep Learning , Humans , Female , Male , Middle Aged , COVID-19/diagnostic imaging , Artificial Intelligence , Lung/diagnostic imaging , COVID-19 Testing , Cohort Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL